You don't have javascript enabled. Good luck! :(

This is a test

You’ll find this post in your _posts directory. Go ahead and edit it and re-build the site to see your changes. You can rebuild the site in many different ways, but the most common way is to run jekyll serve, which launches a web server and auto-regenerates your site when a file is updated.

To add new posts, simply add a file in the _posts directory that follows the convention YYYY-MM-DD-name-of-post.ext and includes the necessary front matter. Take a look at the source for this post to get an idea about how it works.

Jekyll also offers powerful support for code snippets:

def print_hi(name)
  puts "Hi, #{name}"
end
print_hi('Tom')
#=> prints 'Hi, Tom' to STDOUT.

Check out the Jekyll docs for more info on how to get the most out of Jekyll. File all bugs/feature requests at Jekyll’s GitHub repo. If you have questions, you can ask them on Jekyll Talk.

  Jul 1, 2018     WenYuan     機率論  UPDATE:

離散型隨機變數

若有一隨機變數的值域 $S_X$ 為可數實數個的話 , 則稱他為離散型隨機變數 , 而在本篇中要探討的是單 (多) 變數離散型隨機變數的機率函數以及其性質的觀念


單變數離散型

機率質量函數 (m.f)

  • 定義:

假設 $r.v.X$ 為離散型 , 其值域為 $S$ , 如果 $x\in S$ 的話 , 則機率質量函數可以寫成 $f_X(x)=p_X(X=x)$

離散型的機率質量函數具有強烈的機率意義 , 代入 x 後所求出來的值就是機率了 (單點機率值)

  • 必要條件:

(1) $f_X(x)\geq0,\ \forall x \in S$ (機率一定為正)

(2) $\sum\limits_{x\in S}f_X(x)=1$ (機率總和為 1)

所有單變數離散型機率函數單必須符合上述兩個條件


累積分佈函數 (c.d.f)

  • 定義:

假設 $r.v.X$ 的機率質量函數為 $f_X(x)$ , 則他的累積分配函數為 $F_X(x)=p_X(X\leq x)= \sum\limits_{S\leq x}f_X(s)$

  • 必要條件:

(1) $0\leq F_X(x)\leq 1,\ \forall x\in S$ (機率介於 0 到 1 之間)

(2) $F_X(\infty)=1$ (涵蓋所有積分區域)

(3) $F_X(-\infty)=0$ (不涵蓋積分區域)

(4) $x_1<x2 \rightarrow F_X(x_1)\leq F_X(x_2)$ (因為 $F_X(x)$ 為非遞減函數)

(5) $p[X>x]=1-F_X(x)$ (補事件)

(6) $p(a<X\leq b)=F_X(b)-F_X(a)$

  • 性質:

因為 $F_X(x)$ 在每個 x 上的值都剛好與右極限相同 , 意即 $F_X(x)=F_X(x^+)$ , 所以我們稱 $F_X(x)$ 為右極限函數

未完待續…